

How we all can increase the competitiveness of steel

Dipl.-Ing. Marc May ArcelorMittal Europe – Long Products Central Marketing – Technical Advisory November 2015

Introduction

It is common knowledge that building products with higher strength enable to build with less material quantity and thus more competitively and "sustainably".

In practice, typically design and execution is done "as always", which means quite often by using only low strength steel S235 or S275 (understood as cheapest per ton and immediately available).

Innovations and product improvements like S460, but sometimes also S355 are still unknown, ingnored or even declined in the worst case.

History of steel production

Main characteristics of former steel grades (before 1950):

- Poor mechanical properties (yield strength 210-320 MPa)
- Low toughness at low temperatures
- Limited weldability due to high carbon equivalent

Industrial development

- Improvements in production of sections:
 - Melting: Precise alloying

Continuous casting of beam blanks - Casting:

- Rolling:
- Thermomechanical processing

STEEL GRADES OF SECTIONS History and possible outlook

	« yesterday »	« today »	« tomorrow »
« low strength »	« low strength » -		S235/S275
« standard »	St37 / A36	S235 / 🗡 36	S355 / Gr 50
« higher strength »	-	S355 / Gr 50	S460 / Gr65
« high-strength »	St52 / Gr50	S460 / Gr 65	S500 / Gr 70

Note: The change towards higher grades took already place in:

- USA (about 1990-2000): From Grade 36 (250 MPa) to Grade 50 (345 MPa)
- UK (about 2000-2010): From S275 to S355

Today's steel grades in EN

Trend in Europe to higher grades in sections

Shipments in grades S355 or higher

Estimated market share of steel in construction

ArcelorMittal

S235, S275 / S355 / S420, S460 / Market share of **Steel in building** A36 Grade 50 Grade 65 construction* (250 MPa) (345 MPa) (450MPa) USA, Canada < 1% > 1% > 95% 70% UK 10% 90% < 1% 70% Scandinavia 10% < 1% 90% 40% < 1% 60% 40% 30% Poland 50% < 1% 20% 50% Italy Benelux 85% 15% < 1% 20% 90% 10% < 1% 20% France 80% 20% < 1% 10% Germany

* Various sources / estimates 2012

Coincidence or correlation of market share of steel

versus predominant use of higher strength steel ?

Material efficiency = Cost efficiency = Sustainability

Material and cost savings with higher strength sections: Building columns

Material and cost savings with higher strength sections: Composite car park girder

Car park girder	Variant 1	Variant 2	Variant 3
Steel grade	S235JR+M EN10025-2:2004	S355J0+M EN10025-2:2004	S460M EN10025-4:2004
Profile	IPE 600	IPE 550	IPE 500
Yield strength	225 N/mm² (t _f =19 mm)	345 N/mm² (t _f =17,2 mm)	460 N/mm² (t _f =16,0 mm)
Tensile strength	360 – 510 N/mm ²	470 – 630 N/mm ²	540 – 720 N/mm ²
Profile height	600 mm	550 mm	500 mm
Girder weight*	2,12 t 114%	1,86 t 100%	1,61 t 87%
Cost*	110%	100%	90%
Total tonnage girder**	530 t	465 t	403 t
Girder per truck	10	12	14
Trucks to jobsite **	25	21	18

* Cost and weight estimate for ready-to-install girder of 16m length including cambering, shear studs, galvanization, connection plates, delivered to the jobsite ** Car park with 1000 parking places and 250 girders, max. truck load LKW 23 t

Material and cost savings with higher strength sections: Crane runway beam

Tabelle 7. Exemplarischer Vergleich DIN- mit Eurocode-BemessungTable 7. Exemplary comparison of DIN with Eurocode design

							Flächenerspar	nis
Radlast	DIN S235 [7]	А	DIN 8355 [9]	А	EC S355 [9]	A	DIN (S235; HEB) / DIN (S355; HD)	DIN (S235; HEB) / EC (S355; HD)
in kN	Profil	in cm ²	Profil	in cm ²	Profil	in cm ²	in %	in %
80	HEB 360	180,6	HD360×134 **	170,6	HD360×134	170,6	5,5 %	5,5 %
90	HEB 400	197,8	HD360×134 **	170,6	HD360×134	170,6	13,8 %	13,8 %
100	HEB 450	218,0	HD360×134	170,6	HD360×134	170,6	21,7 %	21,7 %
120	HEB 700	306,4	HD360×147 **	187,9	HD360×147	187,9	38,7 %	38,7 %
140	-	_	HD360×162 **	206,3	HD360×162 **	206,3	-	-
160	-	-	HD360×179 **	228,3	HD360×179 **	228,3	-	-
180	-	-	HD400×187	237,6	HD400×187	237,6	-	-
200	-	-	HD400×216	275,5	HD400×216	275,5	-	-

172 Sonderdruck aus: Stahlbau 83 (2014), Heft 3

Possible consequences on market demand: Germany

STARTING POINT

Market share of steel (source bauforumstahl) :

- 30% in single storey buildings
- 5% in multi-storey buildings

<u>2020</u>

Possible outcome after transition from S235JR to S355J0: Market share of steel:

- 40% in single storey buildings
- 10% in multi-storey buildings

S355 is structurally more efficient and allows about 15% material savings.

Possible outcome on demand of sections in Germany

Estimated market consumption of sections in Germany [kt/a]

General considerations

Driven by the need for cost effective construction and sustainability, the material consumption and environmental impact can be easily reduced with higher strength steels.

A (slight) trend towards S355 as base-grade can be monitored for the majority of the European markets.

S460 is used project based by steel fabricators for value-engineering and thus material and cost optimization.

Normative situation

- Steel grades for sections from S235 to S460 well covered by
 - design standard: EN1993
 - product standard: EN10025
 - execution standard: EN1090 (product processing)

ArcelorMittal

NEW: EN1993-1-1, Annex C

Engineer's responsibility:

The Execution Class (EXC) must be specified for:

- the works as a whole
- an individual component
- a detail of a component

Note:

EN1090-2, 4.1.2:

If no execution class is specified **EXC2** shall apply.

ArcelorMittal

NEW: EN1993-1-1, Annex C

Table C.1: Choice of execution class (EXC)

Reliability Class (RC)	Type of loading						
or	Static, quasi-static or	Fatigue ^b or					
Consequences Class (CC)	seismic DCL ^a	seismic DCM or DCH ^a					
RC3 or CC3	EXC3 ^c	EXC3 ^c					
RC2 or CC2	EXC2	EXC3					
RC1 or CC1	EXC1	EXC2					
^a Seismic ductility classes an High = DCH.	re defined in EN 1998-1: Lov	v = DCL; Medium = DCM;					
^b See EN 1993-1-9.							
^c EXC4 may be specified for structures with extreme consequences of structural failure.							

(6) The National Annex may specify the choice of execution class in terms of types of components or details. The following is **recommended**:

If EXC1 is selected for a structure, then **EXC2** applies to the following types of component:

a) welded components manufactured from steel products of grade S355 and above;

b) welded components essential for structural integrity that are assembled by welding on the construction site;

c) welded components of CHS lattice girders requiring end profile cuts;

d) components with hot forming during manufacturing or receiving thermic treatment during manufacturing.

Misperception about EXC1 ? -> Only for consequence Class CC1

EN1990

Table B1 - Definition of consequences classes

Consequences Class	Description	Examples of buildings and civil engineering works
CC3	High consequence for loss of human life, <i>or</i> economic, social or environmental consequences very great	Grandstands, public buildings where consequences of failure are high (e.g. a concert hall)
CC2	Medium consequence for loss of human life, economic, social or environmental consequences considerable	Residential and office buildings, public buildings where consequences of failure are medium (e.g. an office building)
CC1	Low consequence for loss of human life, and economic, social or environmental consequences small or negligible	Agricultural buildings where people do not normally enter (e.g. storage buildings), greenhouses

Consequence Class acc. to EN1991-1-7, Table A.1	Example of categorisation of building type and occupancy
CC1	Single occupancy houses not exceeding 4 storeys.
	Agricultural buildings.
	Buildings into which people rarely go, provided no part of the building is closer to another building, or area where people do go, than a distance 1½ times the building height.

ArcelorMittal

NEW: EN1993-1-1, Annex C

Table C.1: Choice of execution class (EXC)

Reliability Class (RC)	Type of loading							
or	Static, quasi-static or	Fatigue ^b or						
Consequences Class (CC)	seismic DCL ^a	seismic DCM or DCH ^a						
RC3 or CC3	EXC3 ^c	EXC3 ^c						
RC2 or CC2	EXC2	EXC3						
RC1 or CC1	EXC1	EXC2						
High = DCH.	^a Seismic ductility classes are defined in EN 1998-1: Low = DCL; Medium = DCM; High = DCH.							
^b See EN 1993-1-9.								
^c EXC4 may be specified for structures with extreme consequences of structural failure.								

(6) The National Annex may specify the choice of execution class in terms of types of components or details. The following is **recommended**:

If EXC1 is selected for a structure, then EXC2 applies to the following types of component:

a) welded components manufactured from steel products of grade S355 and above;

b) welded components essential for structural integrity that are assembled by welding on the construction site;

c) welded components of CHS lattice girders requiring end profile cuts;

d) components with hot forming during manufacturing or receiving thermic treatment during manufacturing.

Improved traceability

Steel grade (EN10025, ETA-10/0156)	Execution class of component (EN1993-1-1, Annex C)	Certificate (EN 10204)
S235 JR / J0, S275 JR / J0	EXC1 EXC2 EXC3 EXC1	> 2.2
<u>S235 J2, S275 J2</u>	EXC1 EXC2 EXC3 EXC4	→ 3.1
S355 JR / J0	EXC1	> 2.2
	EXC2 - EXC3 - EXC4	→ 3.1
S355 J2 / K2 / M / ML, HISTAR 355 / 355L	EXC1-EXC2-EXC3-EXC4	→ 3.1
S450 J0, S460 M / ML, HISTAR 460 / 460L	EXC1-EXC2-EXC3-EXC4	→ 3.1

Inspection documents EN 10204: 2004

	EN 10204	Desig	nation of the docume	nt type	Document	Document
	Reference	English version	German version	French version	content	validated by
	Type 2.1	Declaration of compliance with the order	Werksbeschei- nigung	Attestation de conformité à la commande	Statement of compliance with the order	The manufacturer
	Type 2.2	Test report	Werkszeugnis	Relevé de contrôle	Statement of compliance with the order, with indication of results of non- specific inspection	The manufacturer
Required for S355 → and higher	Type 3.1	Inspection certificate 3.1	Abnahmeprüf- zeugnis 3.1	Certificat de réception 3.1	Statement of compliance with the order, with indication of results of specific inspection	The manufacturer's authorized inspection representative independent of the manufacturing department
	Type 3.2	Inspection certificate 3.2	Abnahmeprüf- zeugnis 3.2	Certificat de réception 3.2	Statement of compliance with the order, with indication of results of specific inspection	The manufacturer's authorized inspection representative independent of the manufacturing department and either the purchaser's authorized inspection representative or the inspector designated by the official regulations

Table A.1 — Summary of inspection documents

Just to compare...

Steel grade	Strength	Unit cost	Material consumption	Material cost	Trace- ability	Weld- ability	Welding quality requirements	Mill availabilty
S235	100%	100%	100%	100%	Non-specific	Good	Elementary in EXC1	Good
S275	117%	100%	95%	95%	Non-specific	Good	Elementary in EXC1	Good
S355	150%	1 05 %	85%	90%	Specific	Good	Standard in EXC2	Good
S460	196%	115%	70%	80%	Specific	Good	Standard In EXC2	Good

Examples of major Construction Projects in S355 and S460 – EXC2/EXC3

Office for environmental affairs - Brussels

Residence Palace- Brussels

Waalse Krook- Ghent

Ghelamco Stadion - Ghent

Comparison of steel grades

Reinforcing steel			Structural steel			
Grede	Ctropath	Aveilebility	Hollow sections		Rolled open sections	
Grade	Strength	Availability	Grade	Availability	Grade	Availability
BSt 22/34 FeB 220	220 MPa	Out of use	S235	Out of use	S235	Still stocked
BSt 34/50 FeB 400	360 MPa	Out of use	S355	Basis	S355	Available
BSt 500 FeB 500	500 MPa	Basis	S460	Available	S460	Available

Conclusions from the European standardization

- The purpose of Consequence Class (CC) is to ensure that buildings are constructed with the appropriate level of quality control.
- The majority of structures in Europe is expected to be in CC2.
- Execution Class EXC2 will be the appropriate requirement for the majority of buildings constructed in Europe.
- Sections' base grade S355J0+M with Inspection certificate 3.1 meets the technical and economical requirements of the European structural steel fabricators.

Using S355J0+M as base grade for sections will increase the competitiveness of steel !

Questions?

Fragen?

sections.arcelormittal.com

sections.tecom@arcelormittal.com