

Journée Construction Acier 2015 – Mardi 10 novembre

High Rise Buildings in Steel - from Past to Present

Prof. Dr. –Ing. Christoph Odenbreit

ArcelorMittal Chair of Steel and Façade Engineering University of Luxembourg

Historical Considerations

The First High Rise Buildings

High Rise Buildings in Steel from Past to Present

Newest Trends and Research Development Of Enhanced Bracing Systems

The Tower of Babel

ca. 700 B.C.

Drawing of Peter Bruegel Sen. (1525-1569)

Towers of Bologna

12th Century

Hight ca. 97 m

The City of Shebam, South of Jemen

ca. 1500 A.D 500 buildings

Max. 9 storeys

Buildings out of Timber and Clay

Pre-Requisitions for the Modern High Rise Building:

(1) Building Material

The Bessemer Process

A Contraction of the second se

Henry Bessemer (1813 – 1898) England

Inventor of the Bessemer Converter & Process Patent in 1885

Pre-Requisitions for the Modern High Rise Building:

- (1) Building Material
- (2) Elevator

The Elevator

Elisha Grave Otis 1811-1861

Inventor of the Elevator

Otis Elevator with Steam-Powered Engine.

High Rise Buildings in Steel from Past to Present The First High Rise Buildings

Newest Trends and Research Development Of Enhanced Bracing Systems

The First High Rise Building –

The «Home Insurance Building»

1885 Chicago

Hight 42 m

The building is seen as the first High Rise Building

Architect: William Le Baron Jenny Construction: Steel frame and two reinforced concrete walls

The «Empire State Building»

1930-1931 New York

Hight 443 m

(for nearly 40 years the world's highest building)

Architects : William F. Lamb of "Shreve, Lamb and Harmon"

Steel Consumption

Khan (1959) : <u>Premium-For-Hight</u>

90 m Cen		Fauit	First National — Bank,Seattle	Civic	Dome Centre	Chase M. I Bank I		
275 m 180 m 90 m Gate Cen	teway ntre	Equit. verscherung	National —— Bank,Seattle	Centre	Centre	Bank (
275 m 180 m 90 m Gate Cen	teway ntre	Equit. verscherung	National —— Bank,Seattle	Centre	Centre	Bank (
180 m 90 m Gate Cen	teway ntre	Equit. verscherung	National —— Bank,Seattle	Centre				
90 m Gate Cen	teway ntre	verscherung	C. C. S. C. S. C. S. C. S. S. S. S.					
90 m Cen	ntre 1							
	1							
	1.37	10.000	3	4	5	6		
Building module m		1,47	1,422	1,47	1,52			
Span between column centres	13,72	11,75	10,973		12,20			
Plan dimensions 41	1,76×82,91	35,3 6 ×53,83	38,40x43,90		37,80x74,37			
Plan area	3462		1655		-			
Total floor area			68183	136098				
No. of floors for occupants		33	36	28				
No. of service floors		1	4	2	3			
Total no. of floors		35	50	30	56			
Floor - floor height				5,49				
Total height m		135,64	135,62	197,21	225,55			
No. of groups of lifts	2×6	2×6,1×5			4×8			
No. of goods lifts	12	17	22	42	32			
No of goods elevators	1	1			2	\frown		
Self weight of steel kg/m 2	92,76	151,35	159,65	214,82	180,65	234,35		
Steel cost \$/t	300	345		420,0	3270,3800	BEO,S		
Steel cost \$/m 2	30,66	52,72		99,0	64,56775,32	90,38		
Total steel weight t			10886		29938			
5.4						50		

Khan (1959) : <u>Premium-For-Hight</u>

18

Staggered Truss Bracing
Diagrid Structure
Tube System with External X-Bracing
Bundled Tubes
Tube System with Shear Frames (Shear Walls)
Outrigger System
Tube in Tube Bracing
Space Truss Bracing

- Diagrid Structure
- Tube System with External X-Bracing
- **Bundled Tubes**
- Tube System with Shear Frames (Shear Walls)
- Outrigger System
- Tube in Tube Bracing
- Space Truss Bracing

Godfrey Hotel, Chicago

2014

Hight: 16 storeys

Architect : Valerio Dewalt Train Structural Engineer : Structural Affiliates International

Diagrid Structure

Tube System with External X-Bracing

Bundled Tubes

Tube System with Shear Frames (Shear Walls)

Outrigger System

Tube in Tube Bracing

Space Truss Bracing

30 St. Mary Axe, London 2004

Hight: 180 m

Architects : Ken Shuttleworth & Norman Foster

Tour D₂

Paris, La Défense 2014

Hight: 171 m

Architects : Anthony Béchu / Tom Sheehan

Diagrid Structure

Tube System with External X-Bracing

Bundled Tubes

Tube System with Shear Frames (Shear Walls)

Outigger System

Tube in Tube Bracing

Space Truss Bracing

Tube System with External X-Bracing

John Hancock Center

1968-1970 Chicago

Hight: 344 m (100 storeys)

Architects : & Engineers : Skidmore, Owings & Merrill (F. Khan)

Construction: Braced Tube (Steel frame & Megastructure X-bracing)

	1							1		Word
455 m						-			John	Centre
365 m							East Nat.		Hancock Centre	
275 m			First National ——	Civic ——	Dome Centre	Chase M. Bank	Bank Chicago	U.S Steel		
180 m		Equit. verscherung	Bank,Seattle	Centre			圓			
90 m	Gateway Centre									
	1	2	3	4	5	6	7	8	9	10
Building module m	1,37	1,47	1,422	1,47	1,52		1,52			0,99
Span between column centres	13,72	11,75	10,973		12,20					18,29
Plan dimensions	41,76×82,91	35,3 6 ×53,83	38,40x43,90		37,80x74,37					63,70×63,70
Plan area	3462		1655							3995
Total floor area			68183	136098			176510		260120	
No. of floors for occupants		33	36	28			49			94
No. of service floors		1	4	2	3		4		3	4
Total no. of floors		35	50	30	56		60	64	100	104
Floor - floor height				5,49				3,60	<u></u>	0
Total height m		135,64	135,62	197,21	225,55		256,34	256,34	335,28	411,48
No. of groups of lifts	2×6	2×6,1×5			4×8					
No. of goods lifts	12	17	22	42	32					0
No of goods elevators	1	1			2					
Self weight of steel kg/m 2	92,76	151,35	159,65	214,82	180,65	234,35	178,88	146,47	145,00	209,94
Steel cost \$/t	300	315,-		420,0	3270,3800	350,0	425,0		375,0	600,0
Steel cost \$/m 2	30,66	52,72		99,0	64,56(75,32	90,38	79,62		92,53	138,80
Total steel weight t			10886	2	29938		32668		38102	
A	50		82	27	N	2	2	50 0	2	200

Staggered Truss Bracing
Diagrid Structure
Tube System with External X-Bracing
Bundled Tubes
Tube System with Shear Frames (Shear Walls)
Outigger System
Tube in Tube Bracing
Space Truss Bracing

Bundled Tubes

Sears Tower (Willis Tower)

Chicago 1973

Architects & Engineers : SOM (Skidmore, Owings & Merrill) Bruce Graham, Fazlur Khan

Hight: 442 m, 108 storeys

Construction: Bundled Tube System with Steel Frames.

Fazlur Khan

Fazlur Khan with his doughter, Yasmin Sabina Khan

Staggered Truss Bracing
Diagrid Structure
Tube System with External X-Bracing
Bundled Tubes
Tube System with Shear Frames
Outigger System
Tube in Tube Bracing
Space Truss Bracing

Tube System with Shear Frames

World Trade Center, NY 1970 Hight: 417 m

Staggered Truss Bracing
Diagrid Structure
Tube System with External X-Bracing
Bundled Tubes
Tube System with Shear Frames
Outrigger System
Tube in Tube Bracing
Space Truss Bracing

Outrigger System

First Wisconsin Center, Milwaukee, Wisconsin

1972

Hight: 183 m

SOM and Fitzhugh Scott Architects

Effect in Terms of Bending Moments

Staggered Truss Bracing

Diagrid Structure

Tube System with External X-Bracing

Bundled Tubes

Tube System with Shear Frames (Shear Walls)

Outrigger System

Tube in Tube Bracing

Space Truss Bracing

Tube in Tube Bracing

Petronas Towers

Kuala Lumpur, 1999

Hight: 452

Architect: Cesar Pelli & Associates, New Haven, Structural Engineering : Thornton Thomasetti

Construction: Mixed Steel-Concrete Structure

Shear Wall/Truss – Frame Interaction Forces

Fazlur Khan

Shear Wall/Truss – Frame Interaction Forces

Fazlur Khan

Shear Wall/Truss – Frame Interaction Forces

Fazlur Khan

Staggered Truss Bracing

Diagrid Structure

Tube System with External X-Bracing

Bundled Tubes

Tube System with Shear Frames (Shear Walls)

Outrigger System

Tube in Tube Bracing

Space Truss Bracing

Space Truss Bracing

Bank of China, Hong Kong

Hong Kong, 1999

Hight: 315 m

Architect: I.M Pei and Partners Structural Engineering : Leslie E. Robertson Associates

Structures : Steel / Steel-Composite

Research on Super Columns :

ArcelorMittal

China Academy of Building Research

Tsinghua University Beijing

Principle

Projects

Combined Core + Super Columns + Outrigger System

International Finance Center Hong Kong

2003

Hight 412 m

Architect 7 Engineers: Cesar Pelli / Ove Arup

Super Columns + Outrigger + Super Frames

Ping Anh Finance Center Shenzen

Under Construction

Hight 660 m

Architect & Engineers:

Kohn Pedersen Fox & Thornton Thomasetti

Journée Construction Acier 2015 – Mardi 10 novembre

High Rise Buildings in Steel - from Past to Present

Thank You for Your Attention

Prof. Dr. –Ing. Christoph Odenbreit

ArcelorMittal Chair of Steel and Façade Engineering University of Luxembourg